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SUMMARY 
We consider a fourth-order boundary value problem associated with the small vibrations of a uniform 
flexible rod which is clamped at one end and rotates in a plane perpendicular to the axis of rotation. A sig- 
nificant feature is that the axis of rotation does not pass through the clamped end itself. For rapid rotation 
rates, the governing equation involves a small parameter and must be treated by singular perturbation 
techniques. A second parameter fixes the relative location of two turning points. For a range of this second 
parameter, consistent approximations to the characteristic equation are derived, and the limiting behavior 
of the eigenvalues is obtained. 

1. Introduction 

In this paper, we consider a boundary-value problem arising f rom the transverse vibrations 

of  a flexible rod which is clamped at one end and rotates with constant angular velocity in 
a plane perpendicular to the axis of  rotation. The rod is assumed not to twist and to have 
uniform density and cross-section. Eigenvalues of  the boundary-value problem determine 

the rod's natural frequencies of  vibration. 
Rotating flexible rods have been extensively studied in the past. However, most treat- 

ments ([2], [4], and [5]) assume that the rod is hub-clamped, i.e. the axis of  rotation passes 

through the rod's clamped end. In the present work, we assume the clamped end is off the 

axis of  rotation, and hence describes a circle of  radius R > 0 as the rod rotates. A typical 
example involves a flexible rod which is fixed to the rim of a steadily rotating wheel and 

extends inward toward the hub like a partial spoke. This situation is shown in Figure 1. 

For rotating rods clamped off the axis of  rotation, only the static buckling problem has 
previously been examined. Mostaghel and Tadjbakhsh [7] have used numerical procedures 
to determine the critical rotation rate for buckling. An improved estimate has also been 

obtained by Nachman [8] using perturbation techniques. 

2. The basic equation 

To treat the present vibration problem, let s denote arc length along the rod measured 
from the clamped end s -- 0, and let u(s, t) be the transverse displacement of  the rod. 
The vibrations will be assumed sufficiently small so that non-linear terms may be con- 
sistently neglected. I f  the rod has length L, cross-sectional area A, mass per unit volume p, 
bending stiffness EI, and rotates with constant angular velocity f2, the partial differential 
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Figure 1. Flexible rod fixed to rim of a steadily rotating wheel. 
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equation governing the vibrations can be written as 

c34u ~3{p(s) t3u } OZu 
E 1 0 s  4 t?s -~s = - p A  Ot--T-. 

In this equation, the function 

P(s) = pAf22(L - s)[�89 + s) - R] 

(2.1) 

(2.2) 

is the total tensile force at position s. At the clamped end of the rod (s = 0), we must 
have zero displacement and slope, while at the free end (s = L) both shear force and 

bending moment must vanish. Hence, 

t~u 
u(O, t) = -g2s (o, t) = o 

OZu O3u 
~s 2 (L, t) = ~s 3 (L, t) = O 

(2.3) 

We will seek periodic solutions u(s, t) = w(s)e ~~ The system (2.1) and (2.3) may now 
be put in a form more suitable for mathematical analysis by introducing the dimensionless 

variable 

x = - s / L  (2.4) 

and the dimensionless ratios 

pAf2aL~, ~ = R/L, and 2 = (2.5) 

With these scalings, the governing equation becomes 

g 3 w i V  - � 8 9  + x ) ( 1  - 2c~ - x)w" + (x  + ~)w' - 2w  = O, (2.6) 
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and the associated boundary conditions are now 

w(0) = w'(0) = 0 and w" ( -1 )  = w " ( - 1 )  = 0. (2.7) 

Throughout  this work, we will assume rapid rotation so that g ~ 1. From (2.5), we also 
note that the parameter c~ and the eigenvalue ). will both be real and positive. 

The reduced equation obtained by formally setting g to zero in (2.6) is only of second 
order. Hence, for small g, to derive asymptotic approximations to solutions of (2.6), singular 
perturbation methods must be used. It is convenient to regard x as a complex variable. 
For  the boundary value problem, we then desire approximations valid in bounded regions 
of the complex plane which contain the real interval [ -  1, 0]. 

The distinctive character of the governing differential equation (2.6) comes from the two 
turning points on the real axis at xl  = - 1 and x2 = 1 - 2a where the coefficient of the 
second derivative w" vanishes. A novel feature here is that by varying the value of  e, the 
position of the second turning point x2 may be shifted. For example, when c~ = 1, the two 

simple turning points x 1 and xz coalesce to form a single higher order turning point at x~. 
In the boundary value problem, however, regardless of the size of e, there is always a turning 
point directly at the left hand endpoint. Outer expansions alone are thus not adequate for 
formation of  a characteristic equation for the eigenvalue 2. Compatable inner expansions 
valid at and near x~ must also be used. 

In the remainder of this work, we will obtain asymptotic approximations to the eigen- 
values of the boundary value problem for a in the range 

0 < c~ < �89 (2.8) 

In this case, the second turning point x2 lies outside of the region of interest, but the 
boundary point Xo = 0 lies directly on a Stokes line in the complex plane. This range of c~ 
corresponds to rods with L order one but R relatively small. I f  we allow R to be non- 
negative rather than strictly positive, then the limiting case of  the hub-clamped rod a = 0 
may also be included in (2.8) without difficulty. Indeed, one physical example for values 
of ~ in the lower end of this range is a wobbling hub-clamped rod. Specifically, consider a 
flexible rod rotating in the horizontal plane which is clamped at one end to a vertical 
driving shaft. If  the shaft is either slightly bent or otherwise out of true vertical, but the 
rod's plane of rotation remains horizontal, then the axis of rotation will pass through a 
point 0 along the length of  the rod rather than through the clamped end. Viewed from 
above, the clamped end will move in a small circle having 0 as its center. 

3. Transformation and solution 

For a in the range (2.8), equation (2.6) may consistently be transformed to a standard form 
which does not involve a. We define new independent and dependent variables y and qS(y) 
through the relations 

x + ~  
Y -  1 - ~  and qS(y) = w(x). (3.1) 

The two turning points x ,  and xz are thus mapped onto Yl = - 1 and Y2 = q- 1, respec- 
tively, and equation (2.6) becomes 
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e3~,, _ 1(1 _ y2)qS,, + yqS' - 2~b = 0 

with 

5 3 ~__ 

(3.2) 

~3 E1 
= (3.3) 

(1 - ~)4 pAf2Z(L _ R)4" 

This equation is associated with a hub-clamped rod which rotates with the same constant 
angular velocity f2 but has length L - R. 

Using (3.1), the right hand endpoint in the present boundary value problem moves away 
from the origin in the x-plane into the open real interval (0, 1) in the y-plane. We now have 
Yo = y(Xo) = ~(1 - ~)-1, and the boundary conditions (2.7) become 

For the hub-clamped rod, the first two conditions in (3.4) would be evaluated at the origin 
allowing simplifications in the eigenvalue relation which are not possible when ~ is non-zero. 

To form a characteristic equation for the eigenvalues of (3.2, 4), we require approxi- 
mations to a set of four linearly independent exact solutions of (3.2) which are "numerically 
satisfactory" in the sense of Miller [6]. Although the actuaI forms of these exact solutions 
are, of course, unknown, the solutions may be defined to within multiplicative constants 
by their asymptotic properties as follows: 

(i) The solution ~o(Y) is well-balanced in bounded domains containing the real interval 
[ -  1, ~/(1 - ~)]. In particular, this solution is analytic at the turning point Yl = - 1. 

(ii) The solution qbx(y ) is purely balanced in the sector 0 > ph(y + 1) > -2~r/3 of the 
complex plane bounded by Stokes lines. Care must be taken with this solution as 
adding arbitrary multiples of q5 o to ~b a will not alter the stated asymptotic behavior. 

(iii) The two solutions )fi(y) and )~z(Y) are recessive in the sectors lph(y + 1)[ < re/3 and 
-re/3 > ph(y + 1) > - I t ,  respectively, of the complex plane bounded by anti- 
Stokes lines. 

Approximations to these four exact solutions have been derived by Lakin [4] and are given 
here in a modified form more suitable for use at non-zero values ofyo. The four required 
outer expansions will be denoted by q5 o, ~1, 21, and )~2, the four inner expansions by q~o, 

4)1, )~1, and )~2. 
Partial sums of the outer expansions )~1 and )~z may be obtained by the WKBJ technique, 

and are best expressed in terms of the Langer variable 

= 1 3 (1  - y 2 ) ~ d y  . (3.5) 
1 

The turning point Yl = - 1 now corresponds to ql = 0, and q ' ( -  1) = 1. When used in 
(3.2), this variable explicitly brings out the turning point nature of the equation. If 

2 + ( 0  = l~-~Ur"" '2~ ~ ex" t+  z~ -~-,~Hr, 8) (3.6) _ ~ V / q  ) Y \ - - ~ -  q ] V I ,  

where H(q, 0 is a Poincar6 series in powers of e ~, then we have 

Zt = --2-0/) and )~z = i)~+(q). (3.7) 
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In the complete sense of Olver, these expansions are valid away from the turning point 
in the sectors [ph 1/] < 2zc/3 and 0 > ph ~/ > -4zc/3, respectively. 

The outer expansions ~o and ~ have the form 

oo 

)1=0 

where ~(o) is a solution of a second order equation. In terms of t/, power series repre- 
sentations for qS(o ~ and ~(o) may be obtained by the method of Frobenius, and, in the 
complete sense, q~ is asymptotic to ~(o) for 0 > ph t/ > -2zc/3. For applications to the 
boundary value problem, however, it is more convenient to note that, in terms of y, q5 (~ 
satisfies the reduced equation 

� 8 9  - _ + 2 8 ( o >  = o .  (3.8) 

Solutions of (3.8) in the complex y-plane cut from - 1  to - o o  are linear combinations 
of the Legendre functions P~(y) and Q~(y) with 

v(v + 1) = 22. (3.9) 

Appropriate linear combinations in the present case are determined by the behavior of  
q~o and ~b~ as y tends to the turning point Yl = - 1 .  This is somewhat awkward as the 
Legendre functions themselves are usually normalized relative to y = + 1. As a result, 
the linear combinations of P,(y) and Q~(y) obtained in [4] are fairly complicated and 
cause difficulties when the endpoint Yo is not at the origin. Considerably more suitable 
representations may be obtained by exploiting the relations between P~(y), Q~(y), P~(-y), 
and Q~(-y). In particular, 

~ = e v ( -  y) ] 

and / (3.1 O) 

(~(o) = - 2 Q v ( - y )  + [log 2 - 20(v + 1)]P~(-y) J 

where ~(z) = F'(z)/F(z) is the digamma function. 
In the boundary-value problem, outer approximations for the four exact solutions may 

consistently be used at the second boundary point. However, care must be taken as this 
point lies directly on the Stokes line ph t/ = 0 in the complex plane, and, with the ex- 
ception of ~bo, outer expansions of these solutions exhibit the Stokes phenomenon. This 
particularity effects q)t and Zz as the Stokes line ph t/ = 0 bounds the region where these 
solutions are asymptotic to ~1 and 22 alone. Lakin and Ng [5] have shown that, in the 
complete sense, mean expansions should be used on Stokes lines. We thus have 

"C O _ 77 

,4 O 0 d 1 

(3.11) 
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when ph t/ = 0 where s, %, 01, Zo, and ~ are Stokes multipliers and, to order ,a log e, 
s = ao = - 1 ,  Zo = z = 2rci, while al = 0(53) �9 We note that on this Stokes line, the 
exponentials in ~2 and )~ are maximally large and small, respectively. 

Inner expansions for these four exact solutions involve the stretched variable ~ = t//e 
reflecting the fact that the critical layer about the turning point has thickness order e. 
The expansion q~o(~) is simply a power series in ~, and at the turning point, q30(0 ) = 1. 
First approximations to q31(~ ), X1(r and ~2(~) are the generalized Airy functions 
B3 (~; 1, 1), At(f ,  1), and A2(~, 1), respectively. Close to and at the turning point, the four 
exact solutions have the asymptotic behavior 

~)0 r~ ~0(~), Zj "~ Dj(8)Zj(~), j = 1, 2, ! 

t and [ 

r ~ + B1( )$o(0 J 

where Bl(e), Cl(e), and Dj(~) are central matching coefficients. To order ~a, B1 

C1 ~ - 1 ,  a n d D  i ~  1. 

(3.12) 

~, log 8, 

4. The characteristic equation 

In terms of the Langer variable q, the boundary conditions (3.2) are 

~b(qo) - - -  - ~2~b(O) = ~3q5(0) = 0 (4.1) d. 

where t/o = q(Yo), ~2 and ~3 are the differential operators 

d 2 d d 3 d 
Me = d~/~ + 2 ~ - ,  ~a  = dr/~-g + [?' + 221 d-~-~ ' (4.2) 

and ?(r/) = rl"(y)/(rl'(y)) z. As the general solution of (3.2) must be a linear combination 

of  q5 o, q51, X,, and Ze, conditions (4.1) now lead to a characteristic equation involving a 

four-by-four determinant. Let 

d Y  dX 
W(X, Y) = X(~o) ~ (,o) -j~ (~o) Y(~o) 

and B(X, Y ) =  M3X(O)MzY(O)- ~2X(0)~3Y(0). Then, the exact eigenvalue relation 

may be written in the form 

B(dpo, $I)W(z1, Z2) - B(dpo, z,)W(q~I, Z2) + a(q~o, z2)W(q51, Z1) 

+ B(~bl, x~)W(~bo, Z2) - a(q51, z2)W(q5o, Z1) + B(Z1, z2)W(qSo, ~bl) = 0. (4.3) 

After using outer approximations to the exact solutions at r/o and matched inner approxi- 
mations at the turning point ~ = 0, equation (4.3) contains three distinct types of terms 

and may be written as 

@ + ~ + ~ = O. (4.4) 
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Terms in @ involve a multiple of either W(~o, )~2) o r  W ( ~ ,  )~) and are dominant as they 
contain the exponential factor E(qo) = exp {2e-~/o}. In particular 

V 
= Da(OW(~o, Z2) ~ )  

- D ~ ( O W ( ~ ,  ~2)B(q~o, Z1). 

-I- 

(4.5) 

Terms in ~ do not involve exponential factors and are balanced, while terms in N are 
recessive as they contain the exponential factor E-l(qo). Because of these exponentials, 
for small e we have 

~ > ~ > N .  

It is convenient to explicitly take account of these rapidly varying exponentials and write 
the characteristic equation as 

Al(c~, 0E(t/o) + A2(c~, e) + A3(e, e)E-l(qo)  = 0 (4.6) 

The limiting behavior of the eigenvalues 2(c~, 0 as e tends to zero now comes from the 
first approximation to A~(e, e). Indeed, as ~/o lies directly on the Stokes line ph q = 0, 
the exponentials E(qo) and E-~(qo) are maximally large and small, respectively. As a result 
even for moderate values of e, both A2(~ , e) and A3(~, ~)E-l(t/0) will be small compared 
to the error term in A t(e, e)E(tlo). The approximate equation 

A s (c~, e) = 0 (4.7) 

will thus yield good approximations to 2(e, 0 over a wide range of e. 
As q~o, q~l, and f l  are functions of the stretched variable r = t//e and d/dq = e -1 didO, 

the leading term in the expansions for both B(q~o, f l )  and B(q~, )~1) would seem to be of 
order e -5. However, care must be taken as Ai'(~, 1) = {AI({, 0) which vanishes at the 
turning point, so both M=ft and N3)~1 are, in fact, order e-2. Similarly, both Mzq~o and 
~3q~o are order one. Hence, in (4.5), only B(qS,, )~) is order e -s while B(q~o, )~a) is order 
e-2. In addition, )~ is larger than )~2 by a factor e }. These facts lead to the expression 

3-+rc -~ 
A 1(c~, 0 - ~- 23/"r/- �88 ~(o~ e-  ~i/o { 1 + O(e~)}. (4.8) 

2F(�89 

By (4.7) and (3.10), first approximations to the eigenvalues are thus determined by values 
of v for which the Legendre function P~{c~/(c~ - 1)} vanishes. In particular, if v,(e) denotes 
the n-th positive zero of this function for fixed ~, we have 

2n((~ , e) = 1Vn(00[]ln(00 ~- 1] + O(e~). (4.9) 

In the hub-clamped case when e = 0, P~(0) is just a multiple of cos(v~c/2). Hence, in 
agreement with [4], v,(0) is simply an odd positive integer. 

To examine the present situation when ~ is non-zero, let the angle 0 o in radians be 
defined by 

0~ 
cos 0o - (4.10) 
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Hence, 0 < ~ < re/2 corresponds to re/2 < 0 o < re. For fixed values of 0o in this range, 
the asymptotic behavior of Pv(cos 0o) may now be used to obtain explicit analytic formulas 
for the large zeros v,. In particular, 

P+(c~ _ F(v + l__) sin 0o cos v + �89 - + O(v-t). (4.11) 
r(v + +) 

Thus, if fl = 0c/re, Pv(cos 0o) = 0 implies that for large n 

v,(a) "-~ 1 ~ an + 3 ~ _ _t (4.12) 

The higher eigenvalues now have the asymptotic forms 

1 ~ { 4 n + 3 " ~  z } ( ~  1 )  (4.13) ,~.(~) = - ~ l \ - S F  ] - ~ + o ~-, . 

Unfortunately, when 0o is simply between ~/2 and ~ but n is not large, the trigonometric 
expansion for Pv(cos 00) does not admit an explicit formula for vn and, hence, the lower 
eigenvalues. Unless 0 o is close to ~]2, zeros of the Legendre function must now be obtained 
numerically. This type of problem arises in the study of diffraction of waves by a cone 
where the desired information is the zeros of the associated Legendre function P~(cos Oo) 

0 
f 

I I I I 
- - .8 --.6 - - .4  -- .2 0 

COS Oo 

Figure 2. Zeroes of the Legendre function P~(cos 0o). 
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for  fixed 0o. Surprisingly little work has been done for  the Legendre functions themselves,. 

however. Whereas the first fifty zeros o f  P*~(cos 0o) have been computed  to high accuracy 

by several authors,  only the first five zeros o f  P~(cos 0o) have been computed  by Hall [3]. 

Results for v, as a funct ion o f  cos 0 o with n = 1 to 5 are shown in Figure 2. 

Finally, we wish to examine the lower eigenvalues o f  the wobbling hub-clamped rod fo r  

which 0 o is close to zc/2, i.e. e is close to zero. In  this case, expanding the Legendre funct ion 

about  e = 0 gives the relation 

- -  _ _  -q- 0 ( ~  2 )  cot 1 -- 

and hence, for  n = 1, 2, 3 . . . .  

4e 
v,(e) = 2n - 1 + O(eZ). (4.14} 

~ ( 1  - ~) 

For  small ~, we therefore have 

2,,(~) n(2n 1) 2 ~ ( 4 n -  1) 3 = _ + O(8~-, ~2), n = 1, 2, 3 . . . . .  (4.15) 
~ ( 1  - ~) 

A wobble will thus lower the natural  frequencies f rom the values of  the corresponding hub-  

clamped rod, with the effect being more  pronounced  as n increases. 
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